178 {EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 38, NO. 2, FEBRUARY 1990

Comparison of Three Integral Formulations
for the 2-D TE Scattering Problem

NADINE JOACHIMOWICZ AND CHRISTIAN PICHOT

Abstract —Electromagnetic modeling for biomedical applications re-
quires effective numerical methods. At present, one of the most efficient
methods used to solve diffraction problems with dissipative dielectric
objects is the FFT-CGM (fast-Fourier-transform conjugate gradient
method) [1]-[3]. However, in contrast to TM polarization, substantial
errors are found [4] when we use it for computing the internal field
distribution in the TE polarization case for 2-D objects. We here analyze
the source of these errors and show that the modified method, empirically
introduced in [4], is not required if correct terms in the integral equation
are accounted for. With this aim in mind, we propose another integral
formulation using generalized functions and compare it to several formula-
tions available in the literature. Numerical comparisons are carried out for
inhomogeneous dissipative cylinders whose electromagnetic parameters are
close to those of biological tissues. The solution associated with this
integral formulation appears to behave better than the others, in compari-
son with the exact analytical solutions.

I. INTRODUCTION

HE DEVELOPMENT of many biological applica-
tions in electromagnetics, such as microwave imaging

and hyperthermia treatment, requires fast and accurate
computation of the fields in inhomogeneous lossy di-
electrics. Analytical methods exist only for such simple
geometries as cylindrical [5] and spherical ones [6], and are
mainly used to check the accuracy of numerical solutions.
Scattering by an inhomogeneous lossy dielectric struc-
ture can be formulated in terms of an electric field integral
equation. Using pulse basis function expansion and point
matching [7], the integral equation can be reduced to a
system of linear equations. An efficient technique for
manipulating the full matrices which result is to apply the
conjugate gradient method and fast Fourier transforms. A
recent debate [8], [9] on the deficiency of pulse basis
functions casts serious doubt on the applicability of this
method to realistic biological problems. In particular, sig-
nificant inaccuracies are observed for cylindrical objects in
the TE polarization case and 3-D bounded objects. Borup
and coauthors [4] show that extreme care should be exer-
cized when pulse functions are used to expand the un-
known field, and they introduce a new method, called the
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modified high-frequency Hohmann method, based on the
following considerations. First, basis functions should fit
the boundaries of the object accurately; second, the contri-
butions from cell boundaries for which there is no dielec-
tric discontinuity should not be included. The purpose of
our paper is to show that this last modification is not
required if we use the appropriate integral formulation. We
introduce an integral formulation, using generalized func-
tions, which we compare to several formulations already
available [4], [10]. We choose 2-D formulations to test it,
because they are less computationally involved than 3-D
ones. For all numerical methods presented below, the
conjugate gradient technique {11]is'used to solve the linear
system, and the convolution products that appear at each
iteration are computed by means of fast Fourier trans-
forms.

The first approach (denoted here as MGC1) is a 2-D TE
version of Livesay and Chen’s method developed for the
3-D case [10]. The integral formulation is obtained by
applying the differential operators (divergence and gradi-
ent) on the Green function. The kernel is calculated by
replacing the square cell by a disk with the same area (a
volumic cell was replaced by a sphere with the same
volume as in Livesay and Chen’s paper). It has been
suggested by Hagmann et al. [15] that better results could
be obtained with an integral formulation in which the
charge contribution explicitly appears. Because of this, the
second method discussed here (denoted as FFT-CGM [4])
is based on such an integral formulation, the kernel being
obtained as with MGCI1. In the same paper, it was also
proposed that the charge term be integrated along the
exact boundary of each elementary square cell. With this
aim in mind, we then introduce a third method (denoted as
MGC2), which differs from the previous ones in the evalu-
ation of the kernel. The spectral decomposition of the
Green function is used in order to integrate the tensor
along the exact contour of each elementary cell.

Numerical computations have been carried out for ho-
mogeneous and two-layer cylinders whose electromagnetic
parameters are close to those of biological tissues. The
results which we found with MGC1l, MGC2, and FFT-
CGM are far from exact [5]. For this reason, we develop
another method (denoted as MGC3) by using a general-
ized function formalism, with the kernel calculated as with
MGC2.
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Geometry of the 2-D TE cylinder.

Fig. 1.

II. DESCRIPTION OF THE METHODS

Fig. 1 shows an inhomogeneous lossy dielectric cylinder
with arbitrarily shaped cross section D, illuminated by a
TE-polarized incident field E‘. The total electric field is
denoted by E. An exp(—jwt) time dependence is implied.
It is well known that the scattered field is generated by
currents induced inside the object that radiate into the
homogeneous exterior region. Let us define the function
K(r) at point r, proportional to induced current J(r), as

K(r) = E(r)(e2(r)— &) = J(r) /jose,

1)

where e¢* and €* are the complex relative permittivities of
the inner and outer regions respectively. E(r) is given by

E(r)=Ei(r)+(k>+1/¢* grad div)fDU/G(r, PVK(r) ds’
)

where G(r,r’) is the free-space (the exterior medium)
Green’s function.

By applying the differential operator grad div on the
- Green function, we obtain the following integral equation
[10], [12]: ‘

E(r)= E(r) k/fGrr r')ds’

—PV f f 1/¢* grad’div' G (r, ) K(r) ds’

(3)

where PV represents the principal value and grad’ and div’
refer to derivatives with respect to the primed coordinates.

In order to preserve the convolutional form of this
integral equation during numerical computation, we apply
the method of moments with a pulse basis and point
matching. To do so, the object is divided into N elemen-
tary square cells with width A. It follows that the electric
field and the dielectric properties are taken as constant in
each cell and that equality is enforced at the cell centers.

+1/(2¢)K(r)
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* The resulting linear system is then

Ae*(r,
2(*") +1)E(rn)

r,r)ds

e st o

Ae (r

-r4 rad’ div' G(r,, ') ds’
.>=: B[ [e (")

(4)

where

X, X;
( ¥y ) observation pOlIlt ( ) source pomt
n

¥
Ae*(r) =e¥(r)—e*

and S, is the area of the elementary cell centered at point
r. This relation can be expr'essed as

E,(r) =Ty(n)E,, (1) - kzZG( no ) Ko, (n)

xq( )

+E T Dl

=1,2) refer to the x and the y

(5)

where xp and xg (p an
axis respectively and

Ae*(r,)
i) = oo 11
C(r,, ,) f G(rn,r")ds’
Shi

xpxq( no 1) / (9)(7 ax _G(i‘ ,r’) ds’.
are

In the first method (MGC1), kernels Cand T,,,
calculated analytically by replacing the square cells by

disks of equal area [13].

It has been suggested [15] that better results could be
obtained with an integral equation in which the charge
contribution appears explicitly. Its expression below is
deduced from (2):

Ei(r)=E(r)- szmfc(r, ¥VK(r') ds’

+f /1/6* grad’ G(r,r')div K(r)ds’. (6)
Dy i

Here, the first integral is associated with the polarization
current, and the second with the charge. If we assume that
the cross section D, can be divided into M homogeneous
subregions V,, the divergence of the function K(r) in the
second mtegral is nonzero only at the interfaces between
subregions. This integral then reduces to a line integral
along such interfaces [14] and (6) is given by

E'(r) = E(r)—k? ZlAe /fr(r)c;(”)ds
Y Aj

m =1

: / E(r')-n grad’ G(r,r)dl' (7)
Cﬂl
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with Aef = ¢¥ —e€*, where €¥, is the complex relative
permittivity of region V, . The quantity n’ is the outward-
directed unit normal vector, S,, is the surface area of
region V., and C,, is the boundary of region V,,.

By dividing each homogeneous subregion into elemen-
tary cells and using the same method of discretization as

above, we obtain the linear system

E(r)=E(r)—k* ZA(*(r)E(r)f /G(r,r')ds’

=1

. E(r,)fc -n’ grad’ G(

=1 A1

r,r)dl’ (8)

where C,, is the boundary of the elementary cell centered
at point ». This relation can be written as

E. () =E,(r)—k* ZC( o h) K, (r)

N 2 N Ae* r,
CE T Glnn) G,E L)
N 2 6*(,,1)
g Z ‘cpxq(rn‘rl) * Exq(rz) (9)

with the introduction of

+Or7 »cp\q( n’r) —’—‘/‘ o n,q grad;pG(rns r/) dl/
At

T ¢, represents the two opposite sides of the elemen-

tary cell, orthogonal to the normal »’.

The second method (FFT-CGM) is based on the solu-
tion (9) with the kernel calculated in the same manner as
with MGC1, by replacing the square cell by a disk of equal
area. As suggested in [15], the term grad” G could be
integrated along the exact boundary of each elementary
cell. To test the effect of this modification we introduce
method MGC?2, which is still based on the solution of (9),
but where the contribution of the charge is estimated by
using the spectral decomposition of the Green function
(plane wave expansion). With this scheme, the transform
of G, ., functions are evaluated analytically, since deriva-
tions and integrations of the Green function are converted
to multiplication and division factors in the spectral do-
main. However, since these functions are not band-limited
in the spectral domain, it is necessary to zero-pad in order
to avoid aliasing and to approximate an infinite domain.
Computations have shown that, starting with the analytical
spectral expression of G, and using FFT algorithms, a
period of at least 30 times the width of the object must be
chosen. This requirement is due to the narrow extent of the
functions in the spatial domain. In order to reduce storage
and computation time for each iteration without sacrific-
ing accuracy, we employ a procedure suggested in [16], as
follows:

* The spectral kernel function is Fourier transformed
over 30N sampling points by using a FFT algorithm.
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® The spatial function obtained is then truncatéd on 2N
points, which is enough to depict the function cor-
rectly. Fourier transforming this truncated function
back once again into the spectral domain by using
FFT yields the desired approximation for the spectral

expressions of G functions.
xpxq

This form can be used henceforth for carrying out the
convolution operations at each iteration in the conjugate
gradient algorithm [3]. Let us note that Hagmann et al.
[15], using different arguments, have developed a method
(HFH) wherein the kernel is also integrated along the
exact boundary of the elementary cell. This will allow us to
test the method MGC2.

We have compared these different methods to the exact
(series of normal modes), as computed in [5]. All numerical
results appear to be far from the exact ones, as seen in
Section III below. To overcome such a discrepancy, we
introduce a new integral formulation by using a general-
ized function formalism. The derivatives of the discontinu-
ous function K(r) must be estimated carefully. The gener-
alized function formalism allows us to take into account
such discontinuities and to obtain an integral formulation
where the jump o in the function 1/¢* appears at any
boundary C of discontinuity (the notations used below are
the same as in Rodier [17]).

Thus, div K is written as

divK(r) = {divK(r)}+n-ogd. (10)
where { } means that the derivatives are taken in the
function sense and § is the cylindrical Dirac function
defined on C (line discontinuity of €*(r)). From (1) we

obtain
1/e* div K(r) =1/e* dive*(r)E(r)—div E(r). (11)

Using the vector identity

1/ex(r) div (e*(r)E(r))
=divE(r)~- ¢} (r)E(r)-grad (1/e3(r)) (12)
and taking into account that div(e*E) is zero yields
{divE(r)} +n-og0:
1
=eL’f‘(r)E(r)~({grad (1/ef(r)}+na~;3c (13)
€

Introducing (13) into (6), we obtain the integral equation
E'(r)=E(r)—k*[ JG(r.rK(r)as’
Do
= [ Jet(E() {grad(1/ex(r))
-grad’ G(r, r") ds’

- f eX(rE(r')-n'o i (¢) grad’ G(r.¢') dl’
¢
(14)
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, ® ;
Fig. 2. (a) Geometry of the homogeneous circular cylinder. Outer layer
radius =15 cm, frequency = 300 MHz; ¢,,, = 54, 6,, =1.4 S/m.

where [y indicates integration along all contours of dis-
continuity of the function €*(r).

With the integral formulation being discretized in the
same way as before, the second integral vanishes since the
parameters are constant within the elementary cell; the
resulting linear system is

Ei(r,) = E(r) = k> L A()E() [ [6(n,r)ds’

i=1
N ,
- Z E:‘("i)(’l/eg("i)E("i)
i=1

. f -n’ grad’ G(r,, r') dl

Cai

(15)

where 6, .. (r) is the jump in the function 1/e* between
two contiguous cells. As in the above, (15) is written

: N

N 2
- Z Z prxq(rnari)'(:(ri)

i=1gqg=1

+oxq.1/€{!‘ (’;)Exq(rt)

L X Gyulnom)ex(n)

i=1g=1
0 1e (1) E (1) (16)
with
1

ez;k(xij:;"’ yiik) f:(xi» ;)

iorxq.l/(,’f‘ (rl) ==

g=1, xq=x-j=land k=0
qg=2, xq=y—>‘j=0andk=1.

These expressions take into account the orientation of the
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Fig. 2. (Continued) (b) Comparison, between HFH and MGC2 solu-

tions versus analytic solution (the electric fields are normalized with
respect to E;).

normal vector (the contiguous cells being defined as (x;, y;)
and (Xi4 Yizi)-

The last method, MGC3, is based on the solution of
(16), the associated kernels being computed as with MGC2.

111.

In order to compare the results obtained by these differ-
ent methods to those given in [4], we consider the same
objects. They are homogeneous and inhomogeneous cylin-
ders (radius =15 c¢m), composed of muscle or muscle and
fat, which are illuminated at 100 and 300 MHz. They are

NUMERICAL RESULTS
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k
Ei
outer medium
fat
B muscle
()
Fig. 3. (a) Geometry of the layered circular cylinder. Outer layer radius

=15 cm, inner layer radius = 7.9 cm. Frequency =100 MHz; ¢
€. =7506,=095/m, 5,,=0048 S/m.

=72,

rvl

enclosed inside a square divided into elementary square
cells. All numerical results have been computed by using a
conjugate gradient solution method of linear systems. This
requires choosing an initial guess of the unknowns and
using some criterion to stop the iterative procedure. In
each case the incident field is chosen as the initial guess.
The process is stopped when the squared norm of the
residual vector (which is at the ith iteration AX,—Y if
AX =Y denotes the linear system to be solved), divided by
the one of the incident field, falls below 1073, For every
test case presented we display the magnitude of the field
component (E,, E ), normalized with respect to the inci-
dent field. All results are compared with the exact results
computed as in [5], which we represent by a solid line.
The first test case is a muscle cylinder (e,,, = 54, 0, = 1.4
S,/m) divided into 15X 15 square cells and illuminated at
300 MHz (Fig. 2(a)). The results obtained with MGC2 are
shown in Fig. 2(b) and are compared to those obtained
with the HFH method [4]. The resuits are quite similar,
which shows that the procedure used for computing the
kernel in MGC2 does not suffer from aliasing. However,
severe errors are present in both cases. Fig. 3(a) shows the
model used in the next test cases. This is a two-layer
cylinder with an inner layer (radius =15 cm) of muscle
(¢, =72, 6,,=09 S/m) and an outer layer (radius = 7.9
cm) of fat (¢,,,=75, 0,=0.048 S/m). This object is
divided into 21x21 cells and is illuminated at 100 MHz.
Fig. 3(b) compares MGC1 and FFT-CGM. The results are
almost the same, but there is considerable error on the
tangential component of the field at both circular inter-
faces. Formulations (3) and (7) are proved to be equivalent
and so the explicit introduction of the charge term in the
integral equation is not satisfactory. Fig. 3(c) compares
FFT-CGM and MGC2. The MGC2 results differ slightly
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Fig. 3. (Continued) (b) Comparison between FFT-CGM and MGC1
solutions.

from those in Fig. 3(b). Thus we do not benefit from the
integration of the kernel along the exact contour of the
elementary cell. Two modifications are now suggested in
[4] to improve the results. The first one is to divide the
object into irregularly shaped cells which better fit the
curved boundaries. Indeed, taking into account that the
charge contribution in (7) is a line integral, the results
must be quite sensitive to the description of this contour.
Unfortunately, this modified approach does not allow us
to use FFT’s and will cost in both storage and computa-
tion time. It is clearly not useful if we solve the problem
for an object with no curved boundary. The second modi-
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(Continued) (¢} Comparison between FFT-CGM and MGC?2 solutions. (d) Comparison between MGC3 solutions for

two different discretizations.

fication is related to the fact that pulse basis functions
introduce fictitious charges in the interior of homogeneous
regions. To ignore this deficiency, the contributions from
cell boundaries for which there is no actual dielectric
discontinuity have to be excluded. We believe that this
second modification is not useful if we have the appropri-
ate formulation (14). Fig. 3(d) shows the results obtained
with MGC3 for the same object divided into 21 X21 and
45 45 square cells. The agreement of the results for the
two types of discretization shows that the method is con-
vergent. Furthermore, the results appear quite smooth and
are different from the previous ones. Without using the

two modifications, the fictitious discontinuities that appear
in previous methods for the E_ component along the y
axis and for the tangential component disappear. In order
to confirm this obsérvation, we have studied a two-layer
cylinder with an inner layer (radius=15 cm) of muscle
(¢,,1,=54, 6,=14 S/m) and an outer layer (radius = 9.4
cm) of fat (e,,, =5.7, 0,, = 0.05 S/m), shown in Fig. 4(a).
This object is divided into 15X 15 cells and illuminated at
300 MHz. Fig. 4(b) compares MGC2 with MGC3. Results
show that, in contrast to MGC2, MGC3 predicts the jump
discontinuity in E, along x and as a general rule gives a
smoother solution.
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(@

Fig. 4a. (a) Geometry of the layered circular cylinder. Outer layer
radius =15 cm; inner layer radius =9.4 cm. Frequency =300 MHz;
€0 =34, €,,=57, 0,=145/m, o,, =0.05 S/m.

Note that if we deal with objects for which boundaries
are correctly depicted with square cells, the method MGC3
should provide accurate results.

IV. CONCLUSION

It has been shown that the inclusion of the derivatives in
the electric field integral equation for the 2-D TE polariza-
tion scattering may cause serious errors when a method of
moments with pulse basis and point matching is applied.
Current discussions focus on the adequacy of the pulse
basis function [4], [8], [9]. An efficient numerical method
(fast Fourier transform conjugate gradient method) has
been developed [1]-[3] to solve the scattering problem.
However, this method is based on the convolutional form
of the linear 'system, which has been preserved by using
pulse basis functions in the moment method. In order to
use this technique to solve the 2-D TE scattering problem,
we have analyzed these errors by comparing several meth-
ods which differ from one another by the formulations and
the approximations used. It appears that the best results
are obtained by means of an integral formulation where
generalized functions are used. However, since the test
cases are cylinders (for which an analytical solution is
known), the results still differ from the exact ones, because
of the inadequacy of the pulse basis in fitting curved
boundaries. Nevertheless, the method presented here
(MGC3) is numerically efficient by using FFT algorithms
and could be applied to objects for which boundaries are
correctly depicted with square cells.

In summary, the sources of the errors are

® the integral formulation, which must explicitly take
into account the discontinuities existing at each
boundary (at the surface and inside the object), and

¢ the line integral, which must be computed along a
boundary as close as possible to the real contour.

For these reasons we have proposed an integral formula-
tion that uses generalized functions. Its numerical imple-
mentation is simple and does not require an inordinate
amount of time or storage (with respect to the convergence
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solutions.

of the iterative method). The solution behaves better than
others. However, if we wish to deal with objects of revolu-
tion with arbitrary cross section, we must employ basis
functions that better fit the boundaries. This will be stud-
ied in the near future.
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