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Comparison of Three Integral Formulations
for the 2-D TE Scattering Problem

NADINE JOACHIMOWICZ AND CHRISTIAN PICHOT

,&tract —Electromagnetic modeling for biomedical applications re-

quires effective numerical methods. At present, one of the most efficient

met hods used to soh e diffraction problems with dissipative dielectric

objects is the FFT-CGM (fast-Fourier-transform conjugate gradient

method) [1 ]– [3], However, in contrast to TM polarization, substantial

errors are found [4] when we use it for computing the internal field

distribution in the TE polarization case for 2-D objects. We here analyze

the source of these errors and show that the modified method, empirically

introduced in [4], is not required if correct terms in the integral equation

are accounted for. With this aim in mind, we propose another integral

formulation using generalized functions and compare it to several formula-

tions available in the literature. Numerical comparisons are carried out for

inhomogeneous dissipative cylinders whose electromagnetic parameters are

close to those of biological tissues. The solution associated with this

integral formulation appears to behave better than the others, in compari-

son with the exact analytical solutions.

I. INTRODUCTION

T HE DEVELOPMENT of many biological applica-

tions in electromagnetic, such as microwave imaging

and hyperthermia treatment, requires fast and accurate

computation of the fields in inhomogeneous lossy di-

electrics. Analytical methods exist only for such simple

geometries as cylindrical [5] and spherical ones [6], and are

mainly used to check the accuracy of numerical solutions.

Scattering by an inhomogeneous lossy dielectric struc-

ture can be formulated in terms of an electric field integral

equation. Using pulse basis function expansion and point

matching [7], the integral equation can be reduced to a

system of linear equations. An efficient technique for

manipulating the full matrices which result is to apply the

conjugate gradient method and fast Fourier transforms. A

recent debate [8], [9] on the deficiency of pulse basis

functions casts serious doubt on the applicability of this

method to realistic biological problems. In particular, sig-

nificant inaccuracies are observed for cylindrical objects in
the TE polarization case and 3-D bounded objects. Borup

and coauthors [4] show that extreme care should be exer-

cized when pulse functions are used to expand the un-

known field, and they introduce a new method, called the
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modified high-frequency Hohmann method, based on the
following considerations. First, basis functions should fit

the boundaries of the object accurately; second, the contri-

butions from cell boundaries for which there is no dielec-

tric discontinuity should not be included. The purpose of

our paper is to show that this last modification is not

required if we use the appropriate integral formulation. We

introduce an integral formulation, using generalized func-

tions, which we compare to several formulations already

available [4], [10]. We choose 2-D formulations to test it,

because they are less computationally involved than 3-D

ones. For all numerical methods presented below, the

conjugate gradient technique [11] is used to solve the linear

system, and the convolution products that appear at each

iteration are computed by means of fast Fourier trans-

forms.

The first approach (denoted here as MGC1) is a 2-D TE

version of Livesay and Chen’s method developed for the

3-D case [10]. The integral formulation is obtained by

applying the differential operators (divergence and gradi-

ent) on the Green function. The kernel is calculated by

replacing the square cell by a disk with the same area (a

volumic cell was replaced by a sphere with the same

volume as in Livesay and Chen’s paper). It has been

suggested by Hagmann et al. [15] that better results could

be obtained with an integral formulation in which the

charge contribution explicitly appears. Because of this, the

second method discussed here (denoted as FFT-CGM [4])

is based on such an integral formulation, the kernel being

obtained as with MGC1. In the same paper, it was also

proposed that the charge term be integrated along the

exact boundary of each elementary square cell. With this

aim in mind, we then introduce a third method (denoted as

MGC2), which differs from the previous ones in the evalu-

ation of the kernel. The spectral decomposition of the

Green function is used in order to integrate the tensor

along the exact contour of each elementary cell.

Numerical computations have been carried out for ho-

mogeneous and two-layer cylinders whose electromagnetic

parameters are close to those of biological tissues. The

results which we found with MGC1, MGC2, and FFT-

CGM are far from exact [5]. For this reason, we develop

another method (denoted as MGC3) by using a general-

ized function formalism,

MGC2.
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with the kernel calculated as with
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Fig. 1. Geometg of the 2-D TE cylinder.

II. DESCRIPTION OF THE METHODS

Fig. 1 shows an inhomogeneous lossy dielectric cylinder

with arbitrarily shaped cross section DO illuminated by a

TE-polarized incident field Ei. The total electric field is

denoted by E. An exp ( –jot) time dependence is implied.

It is well known that the scattered field is generated by

currents induced inside the object that radiate into the

homogeneous exterior region. Let us define the function

K(r) at point r, proportional to induced current J(r), as

K(r) =E(r)(cf(r)– c’) =“.l(r)/j6Jeo (1)

where c; and C* are the complex relative permittivities of

the inner and outer regions respectively. E(r) is given by

E(r) =E;(r)+(k2+l\c* grad div)~ /G(r, r’)K(r’) ds’
Du

(2)

where G (r, r’) is the free-space (the exterior medium)

Green’s function.

By applying the differential operator grad div on the

Green function, we obtain the following integral equation

[10], [12]:

E(r) =E(r)–k2/ ~G(r, r’)K(r’)ds’
DL,

– PV/~1/C* grad’ div’G(r, r’)li(r’) ds’

+ l/(2 f*)K(r) (3)

where PV represents the principal value and grad’ and div’

refer to derivatives with respect to the primed coordinates.

In order to preserve the convolutional form of this
integral equation during numerical computation, we apply

the method of moments with a pulse basis and point

matching. To do so, the object is divided into N elemen-

tary square cells with width A. It follows that the electric

field and the dielectric properties are taken as constant in

each cell and that equality is enforced at the cell centers.

The resulting linear system is then

‘i(’J=(*+l)E(rn)
–k2 i Ac*(q)E(q)~A,/G(~.,r’)d~’

j=l

-Vy ~(c)~ /graddiv’G(%, r’)ds’
j=l s*;‘

(4)

where

()
Xn Hxi

rn:
Y.

observation point q:
Yi

source point

Ac*(q)=~$(q) -c*

and &i is the area of the elementary cell centered at point

q. This relation can be expressed as

N

E~p(rn) =To(rn)Exp(rn)–k2 X c(rn,q)~xp(q)
i=l

+ f i cc,xq(rnd * (5)
i=lq=l

where xp and xq (p

axis respectively and

and q =1,2) refer to the x and the y

c(r.7v)=~A,G(rn,r’)ds’

In the first method (MGC1), kernels C and rXPX~ are

calculated analytically by replacing the square cells by

disks of equal area [13].

It has been suggested [15] that better results could be

obtained with an integral equation in which the charge

contribution appears explicitly. lts expression below is

deduced from (2):

Ei(r) =E(r)– k2 J /@jO~(O~’
Do

+ H l/c* grad’ G(r, r’)div’K(r’) ds’. (6)
Du

Here, the first integral is associated with the polarization

current, and the second with the charge. If we assume that

the cross section DU can be divided into M homogeneous

subregions Vn, the divergence of the function K(r) in the

second integral is nonzero only at the interfaces between

subregions. This integral then reduces to a line integral
along such interfaces [14], and (6) is given by

““ M / @’)@Od~’E’(r) =E(r)–k2 ~ Ac*.
1>1= 1 s“,
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with & ~ = e,*m,— e*, where c& is the complex relative

permittivity of region V~. The quantity n’ is the outward-

directed unit normal vector, S~ is the surface area of

region ~n:, and Cnl is the boundary of region V~.
By dlvlding each homogeneous subregion into elemen-

tary cells and using the same method of discretization as

above, we obtain the linear system

Er(rM) =E(~, )–k2 ; A~*(r, )E(q)( ~G(r#)ds’
,=1 sA!

-z N ~E(q)~c~,”n’ grad G(rn, r’) dl’ (8)
,=1

where CA, is the boundary of the elementary cell centered

at point r,. This relation can be written as

N

~=]

1=1 ‘/=1 .

with the introduction of

+0’- CA, represents the two opposite sides of the elemen-

tary cell, orthogonal to the normal n’.

The second method (FFT-CGM) is based on the solu-

tion (9) with the kernel calculated in the same manner as

with MGC1, by replacing the square cell by a disk of equal

area. As suggested in [15], the term grad’ G could be

integrated along the exact boundary of each elementary

cell. To test the effect of this modification we introduce

method MGC2, which is still based on the solution of (9),

but where the contribution of the charge is estimated by

using the spectral decomposition of the Green function

(plane wave expansion). With this scheme, the transform

of GX.Y~ functions are evaluated analytically, since deriva-

tions and integrations of the Green function are converted

to multiplication and division factors in the spectral do-

main. However, since these functions are not band-limited
in the spectral domain, it is necessary to zero-pad in order

to avoid aliasing and to approximate an infinite domain.

Computations have shown that, starting with the analytical

spectral expression of GYPX~and using FFT algorithms, a

period of at least 30 times the width of the object must be

chosen. This requirement is due to the narrow extent of the

functions in the spatial domain. In order to reduce storage

and computation time for each iteration without sacrific-

ing accuracy, we employ a procedure suggested in [16], as

follows:

o The spectral kernel function is Fourier transformed

over 30N sampling points by using a FFT algorithm.

● The spatial function obtained is then truncated on 2 N

points, which is enough to depict the function cor-

rectly. Fourier transforming this truncated function

back once again into the spectral domain by using

FFT yields the desired approximation for the spectral

expressions of GXPX~functions.

This form can be used henceforth for carrying out the

convolution operations at each iteration in the conjugate

gradient algorithm [3]. Let us note that Hagmann e~ al.

[15], using different arguments, have developed a method

(HFH) wherein the kernel is also integrated along the

exact boundary of the elementary cell. This will allow us to

test the method MGC2.

We have compared these different methods to the exact

(series of normal modes), as computed in [5]. All numerical

results appear to be far from the exact ones, as seen in

Section III below. To overcome such a discrepancy, we

introduce a new integral formulation by using a general-

ized function formalism. The derivatives of the discontinu-

ous function K(r) must be estimated carefully. The gener-

alized function formalism allows us to take into account

such discontinuities and to obtain an integral formulation

where the jump u in the function I/c; appears at any

boundary C’ of discontinuity (the notations used below are

the same as in Rodier [17]).

Thus, div K is written as

div K(r) = {divK(r)} + n.u~8c (10)

where { } means that the derivatives are taken in the

function sense and 8C is the cylindrical Dirac function

defined on C (line discontinuity of c; ( r)). From (1) we

obtain

l/~* div K(r) =1/~* divc~(r)E(r) –div E(r). (11)

Using the vector identity

l/c~(r) div (c~(r)E(r))

=div E(r) -~~(r),!?(r).grad (l/t:(r)) (12)

and taking into account that div ( ~~E ) is zero yields

{div E(r)} +no@c

( 1
=c#(r)E(r). {grad (l/c~(r)}+na~8c (13)

2,

Introducing (13) into (6), we obtain the integral equation

E’(r) =E(r)–k”~ fG(r, r’)K(r’)ds’
D(’

- / f~~(r’)E(r’) {grad’(1/e:(r’)}
D(

-grad’ G(r, r’) ds’

-~ c~(r)E(r)nol,,(r) grad G(r,r)dl
~(,

(14)



JOACHIMOWICZ AND PICHOT: COMPARISON OF THREE INTEGRAL FORMULATIONS 181

t y-axis

x
w .U

t
Y HF’H ( BGRUP )

o MGC2

G “w

E

Y

z
0

YOY

s yil o a My
.03 Q QJ Y Y a o“1

‘,.EAt44&4-M -.0s4 -.028 Ua ,0s4 .14

X AXIS

(a)
g .12

Fig. 2. (a) Geomet~ of the homogeneous circular cylinder. Outer layer
radius =15 cm, frequency = 300 MHz; (,,,1 = 54, UUI=1.4 S/m.
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where Ul,<t (q) is the jump in the function l/c~ between ~ .8

two contiguous cells. As in the above, (15) is written
a
~

5
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Fig. 2. (Continued) (b) Comparison betweeti HFH and MGC2 solu-

tions versus anatytic solution (the electric fields are normalized with
respect to Ej ).

normal vector (the contiguous cells lbeing defined as (xi, yi)

(16) and(~i~j,~ti~ ))-
The last method, MGC3, is based on the solution of

(16), the associated kernels being computed as with MGC2.

1

[

1*
%,,1/.: (L)=*

c~(xi+~,yi+~) - 6Y(xi, Yi) 1

III. NUMERICAL R.EsULTs

In order to compare the results obtained by these differ-

q=l, xq=x-+j=landk=O ent methods to those given in [4], we consider the same

q=2, xq=y+j=Oandk=l.
objects. They are homogeneous and inhomogeneous cylin-

ders (radius =15 cm), composed of muscle or muscle and

These expressions take into account the orientation of the fat, which are illuminated at 100 and 300 MHz. They are
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Fig. 3. (a) Geometry of the layeredcircular cylinder. Outer layer radius
=15 cm. inner layer radius = 7.9 cm. Frequency= 100 MHz; C,UI= 72,
C,,,z= 7.5; u,,,= 0.9 S/m, U,,2= 0.048 S/m.

enclosed inside a square divided into elementary square

cells. All numerical results have been computed by using a

conjugate gradient solution method of linear systems. This

requires choosing an initial guess of the unknowns and

using some criterion to stop the iterative procedure. In

each case the incident field is chosen as the initial guess.

The process is stopped when the squared norm of the

residual vector (which is at the i th iteration AXi – Y if

AX= Y denotes the linear system to be solved), divided by

the one of the incident field, falls below 10-3. For every

test case presented we display the magnitude of the field

component ( Ex, E.Y), normalized with respect to the inci-

dent field. All results are compared with the exact results

computed as in [5], which we represent by a solid line.

The first test case is a muscle cylinder (~,Ul = 54, OUI= 1.4

S/m) divided into 15x 15 square cells and illuminated at

300 MHz (Fig. 2(a)). The results obtained with MGC2 are

shown in Fig. 2(b) and are compared to those obtained

with the HFH method [4]. The results are quite similar,

which shows that the procedure used for computing the

kernel in MGC2 does not suffer from aliasing. However,

severe errors are present in both cases. Fig. 3(a) shows the

model used in the next test cases. This is a two-layer

cylinder with an inner layer (radius= 15 cm) of muscle

(c,Ul = 72, Ool= 0.9 S/m) and an outer layer (radius= 7.9

cm) of fat (C,C,2= 7.5, Ooz= 0.048 S/m). This object is

divided into 21x 21 cells and is illuminated at 100 MHz.

Fig. 3(b) compares MGC1 and FFT-CGM. The results are

almost the same, but there is considerable error on the

tangential component of the field at both circular inter-

faces. Formulations (3) and (7) are proved to be equivalent

and so the explicit introduction of the charge term in the

integral equation is not satisfactory. Fig. 3(c) compares

FFT-CGM and MGC2. The MGC2 results differ slightly
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Fig. 3. (Continued) (b) Comparison between FFT-CGM and MGC1

solutions.

from those in, Fig. 3(b). Thus we do not benefit from the

integration of the kernel along the exact contour of the

elementary cell. Two modifications are now suggested in

[4] to improve the results. The first one is to divide the

object into irregularly shaped cells which better fit the

curved boundaries. Indeed, taking into account that the

charge contribution in (7) is a line integral, the results

must be quite sensitive to the description of this contour.

Unfortunately, this modified approach does not allow us

to use FFT’s and will cost in both storage and computa-

tion time. It is clearly not useful if we solve the problem

for an object with no curved boundary. The second modi-
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Fig. 3. (Continued) (c) Comparison between FFT-CGM and MGC2 solutions. (d) Comparison between MGC3 solutions for
two different discretizations.

fication is related to the fact that pulse basis functions

introduce fictitious charges in the interior of homogeneous

regions. To ignore this deficiency, the contributions from

cell boundaries for which there is no actual dielectric

discontinuity have to be excluded. We believe that this

second modification is not useful if we have the appropri-
ate formulation (14). Fig. 3(d) shows the results obtained

with MGC3 for the same object divided into 21x 21 and

45X 45 square cells. The agreement of the results for the

two types of discretization shows that the method is con-

vergent. Furthermore, the results appear quite smooth and

are different from the previous ones. Without using the

two modifications, the fictitious discontinuities that appear

in previous methods for the EX component along the y

axis and for the tangential component disappear. In order

to confirm this observation, we have studied a two-layer

cylinder with an inner layer (radius= 15 cm) of muscle

(crul = 54, au, = 1.4 S/m) and an outer layer (radius= 9,4

cm) of fat (c,,,z = 5.7, UU2= 0.05 S/m), shown in Fig. 4(a).

This object is divided into 15x 15 cells and illuminated at

300 MHz. Fig. 4(b) compares MGC2 with MGC3. Results

show that, in contrast to MGC2, MGC3 predicts the jump

discontinuity in EX along x and as a general rule gives a
smoother solution.
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IV. CONCLUSION

It has been shown that the inclusion of the derivatives in

the electric field integral equation for the 2-D TE polariza-

tion scattering may cause serious errors when a method of

moments with pulse basis and point matching is applied.

Current discussions focus on the adequacy of the pulse

basis function [4], [8], [9]. An efficient numerical method

(fast Fourier transform conjugate gradient method) has

been developed [1]-[3] to solve the scattering problem.

However, this method is based on the convolutional form

of the linear system, which has been preserved by using

pulse basis functions in the moment method. In order to

use this technique to solve the 2-D TE scattering problem,

we have analyzed these errors by comparing several meth-

ods which differ from one another by the formulations and

the approximations used. It appears that the best results

are obtained by means of an integral formulation where

generalized functions are used. However, since the test

cases are cylinders (for which an analytical solution is

known), the results still differ from the exact ones, because

of the inadequacy of the pulse basis in fitting curved

boundaries. Nevertheless, the method presented here

(MGC3) is numerically efficient by using FFT algorithms

and could be applied to objects for which boundaries are

correctly depicted with square cells.

In summary, the sources of the errors are

-.14 -.ss4 -.828 .928 .884 .14

Y AXIS

X AXIS

(b)

Fig. 4. (Continued) (b) Comparison between NfGC3 and MGC2

solutions.

of the iterative method). The solution behaves better than
others. However, if we wish to deal with objects of revohz-

tion with arbitrary cross section, we must employ basis ‘

functions that better fit the boundaries. This will be stud-

ied in the near future.

● the integral formulation, which must explicitly take

into account the discontinuities existing at each

boundary (at the surface and inside the object), and

● the line integral, which must be computed along a

boundary as close as possible to the real contour.
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